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The following are equivalent. As z →∞:

f(z) ∼
∞∑
n=1

an
1

zn

f(z) =

N∑
n=1

an
1

zn
+O

(
1

zN+1

)

f(z) =

N∑
n=1

an
1

zn
+ o

(
1

zN

)



Preliminary Example: The Hyperbolic Sine Function

Let sinh(z) = 1
2(ez − e−z) where z ∈ C.

Observe, as z →∞:
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Sinh in the Complex Plane

Observe the change in behavior across the imaginary axis.
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What is the Stokes Phenomenon?

Broadly speaking, the Stokes phenomenon is that asymptotic
expansions may change behavior in the complex plane.

More strictly, a Stokes phenomenon is a change arising from the
“conception and subsequent birth” of terms that appear and
become active with the changing phase.

R. B. Dingle’s Description

At a certain phase drawn in the complex plane as a “Stokes
ray”, an “associated function” appears, disappears or changes
its numerical multiplier.”
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Stokes’ Work

Here, U denotes a solution to the Airy equation, d2U
dn2 + n

3U = 0.
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Stokes Behavior of the Airy Function
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Airy Function Asymptotics
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Airy Function in the Complex Plane

Complex plots of the approximations and where they agree.
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Example Two: WKB Solution to a Helmholtz Equation

Consider this one-dimensional Helmholtz Equation:

d2u

dz2
(z) = k2R2(z)u(z)

Medium of Varying Refractive Index µ:

R(z) = iµ(z), µ(x) > 0, µ(x)→ 1 as x→∞

Exponentially weak reflections arise:

M. Berry

We are able to answer this question [i.e. where and how does
the reflected wave arise on the x-axis], because the birth of a
reflection is simply the switching-on of a subdominant
multiplier.
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Stokes Lines for the Equation

Stokes lines arise from zeroes of R, say zj , wherein:

Imw(z) = 0, w(z) :=

∫ z

zj

R(t)dt

M. Berry

Stokes lines lie at the heart of the asymptotics of [this
equation.] They are the locus of greatest disparity between the
dominant and subdominant fundamental phase-integral
approximate solutions attached to zj :

u± ≈ exp(±kw(z))/R
1
2 (z).
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Behavior of the Waves

Dominant u+ corresponds to the incident wave,
Subdominant u− to the reflected wave.

u± ≈ exp(±kw(z))/R
1
2 (z).

WKB Approximate Solution:

u(z) ≈ a+(z)u+(z) + a−(z)u−(z)

Across a Stokes line, the multiplier a− jumps by ia+.
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Example Three: Quantum Billiards

Suppose a quantum particle moves freely in planar region B
with reflection at the boundary ∂B.

Consider the Dirichlet eigenvalue problem:{
−∆φn(r) = Enφn(r), r = (x, y) ∈ B

φn = 0 r ∈ ∂B

Regularized Resolvent:

g(s) = lim
N→∞

(
N∑
n=1

1

En + s2
− A

4π
log

(
EN
s2

))
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Example Three: Quantum Billiards

Weyl Expansion:

g(s) =

∞∑
r=1

cr
sr

One may truncate to the least term, obtaining an exponentially
small remainder.

g(s) =

r∗∑
r=1

cr
sr

+R(s)

Across Stokes lines, the remainder changes behavior becoming
oscillatory, then large.

e−s −→ e−is −→ es, s ∈ R+
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Next Time: Segue into Resurgence

Quantum Billiards Examples

Spectral Resurgence

Deducing Stokes behavior from expansions

And more!
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