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Last time...

The Stokes phenomena concerns changes in asymptotic
behavior.

Stokes lines occur when all expansion terms have the same
phase.

Across Stokes lines, non-perturbative terms appear.

The phenomenon occurs with: the Airy function, WKB
solutions, and Weyl expansions.
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Airy Function Recap

The Airy function and two different asymptotic expansions (to
first order.)
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Airy Asymptotics Recap

Asymptotic Expansions:
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Airy Function Expansion

The Airy function is governed by the asymptotic expansion:
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More remarks:

ϕAi is factorially divergent (of Gevrey-class one.)

z = k
3
2 is a natural change of variables for ensuing

resummation.
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Airy Series: Borel Summation

The minor of ϕAi is its (formal) Borel transform, forgetting
the constant term:

ϕ̃Ai := B[ϕAi] =
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SθϕAi(z) := a0 + LθB[ϕAi](z) = a0 +
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0

ϕ̃Ai(ζ)e−zζdζ
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A Borel Resummed Expansion
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One can rotate the direction of summation for new regions of
validity.
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Contours near the Singularity at −4
3

Courtesy of Delabaere:



Alien Calculus & Behavior across the Singularity

The Hankel contour γ can be expressed using the so-called alien
derivative: ∫

γ
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Airy Function on the Negative Real Line

Deducing the behavior Ai for negative real inputs.

Airy expansion when | arg(k)− π| < π
3 , z = k
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Once can rewrite the LHS as the resummed version of the
second expansion we saw previously.
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Zeroes and the Real Line

This expression can be rewritten to calculate the zeroes on the
Airy function.

This procedure follows the original calculations Stokes did two
hundred years ago, with justifications from resurgent analysis.
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The Upshot & Transition

The Stokes phenomenon related to the Airy function can
be analyzed using methods from resurgent analysis and
Borel resummation.

Follow up: when do we expect to see such behavior?
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Spectral Functions

Counting Function:

N(E) :=
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g(s) =
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Harmonic Oscillator

A quantum harmonic oscillator has a Hamiltonian of the form:

H =
P 2

2m
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1

2
mω2X2

The energy levels are given by:
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Harmonic Oscillator: Spectral Resolvent

The resolvent can be written as the formal series:

g(s) = − 2

ω
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(−1)k(2k − 1)!
( ω

2πs2m
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Note that each series in k is factorially divergent.

Stokes lines occur for each when arg(s) = π
4 .

Exponential terms Rm show up across these lines.

Remark: the poles occur at g(i
√
En).

− 2

ω

∞∑
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(−1)mRm(i
√
E) ≈ π
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(
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πE
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Free Particle on a Ring

A particle on a ring solves the Schrodinger equation:

− ~2

2m

∂2

R2∂θ2
ψ = Eψ

The energy levels are given by:

En = πn2, n ∈ Z
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Particle on a Ring: Spectral Resolvent

The resolvent can be defined in this case without regularization,
due to convergence. In particular:

g(s) =

∞∑
n=−∞
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n2π + s2
=
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s
coth(s

√
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=

√
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(
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√
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)

In this situation, there is no resurgence/Stokes phenomenon.

The semi-classical approximations for the propagator (the trace
of K) and the energy Green’s function are exact.
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Contrasted Examples & What’s Next?

The examples show that non-exactness and divergence are
connected to resurgency/ Stokes phenomena.

This gives clues as to where to such phenomena would
appear in explicit formulae.

Based on some results about lacunary series and natural
boundaries, we now ask the question...
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Question for Next Time...

Is is possible to glimpse behind the screen?

Inspired by results in “Behavior of Lacunary Series at the
Natural Boundary” by Costin and Huang.
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