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Supernumerary, or Spurious, Rainbow



Historical Preface

In 1838, G. B. Airy found a theoretical model for the
illumination, involving (the square of) the integral:

W (m) =

∫ ∞
0

cos
(π

2
(w3 −mw)

)
dw

Airy could only calculate two zeroes before the process
became intractable

In 1841, W. H. Miller observed/measured 30 dark bands
for the primary bow

In 1850, Stokes employed another method, managing to
calculate 50 zeroes!



Historical Preface

In 1838, G. B. Airy found a theoretical model for the
illumination, involving (the square of) the integral:

W (m) =

∫ ∞
0

cos
(π

2
(w3 −mw)

)
dw

Airy could only calculate two zeroes before the process
became intractable

In 1841, W. H. Miller observed/measured 30 dark bands
for the primary bow

In 1850, Stokes employed another method, managing to
calculate 50 zeroes!



Historical Preface

In 1838, G. B. Airy found a theoretical model for the
illumination, involving (the square of) the integral:

W (m) =

∫ ∞
0

cos
(π

2
(w3 −mw)

)
dw

Airy could only calculate two zeroes before the process
became intractable

In 1841, W. H. Miller observed/measured 30 dark bands
for the primary bow

In 1850, Stokes employed another method, managing to
calculate 50 zeroes!



Historical Preface

In 1838, G. B. Airy found a theoretical model for the
illumination, involving (the square of) the integral:

W (m) =

∫ ∞
0

cos
(π

2
(w3 −mw)

)
dw

Airy could only calculate two zeroes before the process
became intractable

In 1841, W. H. Miller observed/measured 30 dark bands
for the primary bow

In 1850, Stokes employed another method, managing to
calculate 50 zeroes!



Stokes’ Method I

After some rescaling/changing variables, Stokes worked with:

u = e−i
π
6

∫ ∞
0

e−(z
3−pz)dx = U − iU ′

U satisfies the Airy equation:

d2U

dn2
+
n

3
U = 0

Airy’s method was to expand the exponential in pz.

As noted by Stokes, though, this is “not convenient” when n
becomes large.
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Stokes’ Method II

Stokes had the idea to write:1

U = e
2
3

√
−n3

3

(
Anα +Bnβ + Cnγ + ...

)

From the equation, he deduced that:

U = An−
1
4 e

2
3

√
−n3

3

(
1− 1 · 5 · i

16
√

3n2
+

1 · 5 · 7 · 11

1 · 2

(
i

16
√

3n2

)2

+ ...

)

and similarly for negative values n′ = −n.

Just one small problem... the series diverges.

1Based on formulae M. Cauchy had found for Fresnel’s integrals.
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Stokes’ Method III

Here’s what Stokes’ original series looks like:
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Stokes’ Method IV

G. G. Stokes

When n or n′ is at all large, the series [for U ] are at first rapidly
convergent, but they are ultimately in all cases
hypergeometrically divergent. Notwithstanding this divergence,
we may employ the series in numerical calculation, provided we
do not take in the divergent terms.

Stokes was able to calculate 50 zeroes, encountering “only”
7-figure logarithms instead of 10-figure ones.

This is exactly what in modern days we would deem optimal (or
least) truncation of an asymptotic expansion.



Stokes’ Method IV

G. G. Stokes

When n or n′ is at all large, the series [for U ] are at first rapidly
convergent, but they are ultimately in all cases
hypergeometrically divergent. Notwithstanding this divergence,
we may employ the series in numerical calculation, provided we
do not take in the divergent terms.

Stokes was able to calculate 50 zeroes, encountering “only”
7-figure logarithms instead of 10-figure ones.

This is exactly what in modern days we would deem optimal (or
least) truncation of an asymptotic expansion.



Stokes’ Method IV

G. G. Stokes

When n or n′ is at all large, the series [for U ] are at first rapidly
convergent, but they are ultimately in all cases
hypergeometrically divergent. Notwithstanding this divergence,
we may employ the series in numerical calculation, provided we
do not take in the divergent terms.

Stokes was able to calculate 50 zeroes, encountering “only”
7-figure logarithms instead of 10-figure ones.

This is exactly what in modern days we would deem optimal (or
least) truncation of an asymptotic expansion.



Stokes Method V

The expansion for U is different for negative n (what we now
call the first example of the Stokes phenomenon.)

This expansion was less tractable:

G. G. Stokes

This mode of determining the constant [in front of the negative
U expansion] is anything but satisfactory. I have endeavored in
vain to deduce the leading term in U for n negative from the
integral itself...

Today, we do know how to deduce the behavior for all n from
the integral itself!
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The Airy Function (Real Inputs)

Ai(x) =
1

2π
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xt+ t3
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)
dt
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Method of Steepest Descent

Defining the Airy function for complex z takes some care; the
integral is highly oscillatory.

The method of steepest descent for an integral of the form:∫
C
f(t)exg(t)dt, x� 1

involves deforming the integration contour to pass along the
direction of steepest descent (i.e. parallel to −∇u, where
g = u+ iv) to pass by saddle points (viz. near where the
integral is maximal, or at least less rapid oscillations cause less
cancellation.)

(In particular, this enables one to use Laplace’s method to
estimate the integral.)
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Airy Function, Deformed Contour

For the Airy integral, these curves occur when the cubic term is
negative. In particular, this happens if the phase of t is ± iπ

3 , or
t is negative.

Thus, we write:

Ai(z) =
1

2πi

∫
γ
e
t3

3
−ztdt, Im(γ) = (∞e−

πi
3 , 0] ∪ [0,∞e
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=
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Airy Function Asymptotics

Asymptotic Expansions:

Ai(z) ∼ 1

2
√
π
z−

1
4 e−ζ

∞∑
n=0

(−1)n
cn
ζn

| arg(z)| < π

Ai(−z) ∼ 1√
π
z−

1
4

(
sin(ζ +

π

4
)
∞∑
n=0

(−1)n
c2n
ζ2n

− cos(ζ +
π

4
)

∞∑
n=0

(−1)n
c2n+1

ζ2n+1

)
| arg(z)| < 2

3
π

Notation:

ζ =
2

3
z

3
2 , c0 = 1, cn =

Γ(3n+ 1
2)

54nΓ(n+ 1)Γ(n+ 1
2)
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Asymptotics on the Real Line
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Asymptotics in the Complex Plane

Complex plots of the approximations and where they agree.
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1
4√

π
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3
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Resumming the Asymptotic Series

The Airy function is governed by the asymptotic expansion:

ϕAi(z) =

∞∑
n=0

an
zn

=

∞∑
n=0

(
−3

4

)n Γ(n+ 1
6)Γ(n+ 5

6)

2πΓ(n+ 1)

1

zn

Ai(k) ∼ 1

2
√
π
k−

1
4 e−

2
3
k
3
2 ϕAi(k

3
2 )

More remarks:

ϕAi is factorially divergent (of Gevrey-class one.)

z = k
3
2 is a natural change of variables for ensuing

resummation.
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(This is the same formula as before, but with a change of
variables to make growth akin to Γ(n) more manifest.)
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Interlude: Borel Summation Schematic

	



Borel Summation Example

	



Airy Series: Borel Summation

The minor of ϕAi is its (formal) Borel transform, forgetting
the constant term:

ϕ̃Ai := B[ϕAi] =

∞∑
n=1

an
ζn−1

(n− 1)!

ϕ̃Ai extends analytically to the universal cover of
C \

{
0,−4

3

}
For any direction θ not along the negative real axis, the
following converges for Re(zeiθ) > 0:

SθϕAi(z) := a0 + LθB[ϕAi](z) = a0 +

∞eiθ∫
0

ϕ̃Ai(ζ)e−zζdζ
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A Borel Resummed Expansion

Where before:

Ai(k)∼ 1

2
√
π
k−

1
4 e−

2
3
k
3
2 ϕAi(k

3
2 )

We now have:

Ai(k)=
1

2
√
π
k−

1
4 e−

2
3
k
3
2 S0ϕAi(k

3
2 )

This resummation is valid for | arg(k)| < π
3 , |k| > 0.

One can rotate the direction of summation for new regions of
validity.
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Contours near the Singularity at −4
3

Rotation of summation is fine up until one encounters the
singularity on the negative real line.
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“Alien” Calculus & Behavior across the Singularity

The Hankel contour γ can be expressed using the so-called alien
derivative: ∫

γ
ϕ̃Ai(ζ)e−zζdζ = e+

4
3
zS−π

(
∆z
− 4

3

ϕAi

)
(z)

In this case,

∆z
− 4

3

ϕAi = −iϕBi, ϕBi(z) :=

∞∑
n=0

(−1)n
an
zn

ϕBi is also Gevrey-1 and its minor ϕ̃Bi extends analytically to
the universal cover of C \

{
0,+4

3

}
.
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ϕBi is also Gevrey-1 and its minor ϕ̃Bi extends analytically to
the universal cover of C \

{
0,+4

3

}
.



Airy Function on the Negative Real Line

Deducing the behavior Ai for negative real inputs.

Airy expansion when | arg(k)− π| < π
3 , z = k

3
2 :

Ai(k) =
1

2
√
π
k−

1
4

(
e−

2
3
zS− 3π

2
ϕAi(z) + ie+

2
3
zS− 3π

2
ϕBi(z)

)
Note the new exponential term that appeared.

Once can rewrite the LHS as the resummed version of the
second expansion we saw previously.
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Zeroes “Resurge” from the Original Expansion

This expression can be employed to calculate the zeroes on
the Airy function (viz. the Delabaere reference.)

This procedure follows the original calculations of Stokes,
but now by manipulating the full series itself. The
mathematical justification for the resummation comes from
resurgent analysis.

In particular, the behavior on the negative real line is
manifestly contained in the expansion on the positive real
line— an example of resurgence.
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