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Generalized von Koch Fractals Kn,r
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A Closer Look at K5, 15
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Tube Formulae for Kn,r

The main goal is to study the volume of an (inner) epsilon
neighborhood of the fractal set @Kn,r.

VKn,r(") = mLeb({x ! Kn,r : d(x, @Kn,r) < "})

Figure: The full (not inner) epsilon neighborhood of the fractal K4, 1
4
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Known Results for K3, 13

Lapidus and Pearse have previously obtained an explicit tube
formula for the ordinary von Koch snowflake fractal, K

3, 13
,

which takes the form [LP06]:

VK
3, 13

(") =
!

n! Z

'n"
2" (D+inp) +

!

n! Z

 n"
2" inp

Here 'n and  n are constants depending only on n, D = log3 4,
and p = 2⇡/ log 3.

The constants for the exact tube formula are not explicitly
given, however. They depend on a function related to the error
in their initial approximation.
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Tube Zeta Functions [LRŽ17]

The relative tube zeta function of a (fractal) set @⌦ relative to
⌦ " R2 is defined by:

"⇣⌦(s) =
�

0

t
s" 2

V⌦(t)
dt

t
,

where V⌦ = |(@⌦)" # ⌦| is the volume of an inner
"-neighborhood.

The poles of the zeta function are called the complex
dimensions of @⌦, and they describe the geometry of @⌦.
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Explicit Tube Formula, General Results

Lapidus, Radunović, and Žubrinić have shown explict tube
formulae for V⌦, expressed in terms "⇣⌦.

Assume that "⇣⌦ admits a meromorphic continuation to (an
open, connected neighborhood of) Re(s) > �0 and satisfies
appropriate languid growth conditions. Then the tube formula
satisfies [LRŽ17]:

V
[k]
⌦

(") =
!

!

Res

#
"
2" s+k

(2 $ s+ 1)k
"⇣⌦(s);!

$
+O("2" �0+k)

Here, V [k]
⌦

is the k
th antiderivative of V⌦, and the formula holds

pointwise when k is large enough.1

1The bound depends upon the speciÞc exponent appearing in the
languid growth conditions.
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Toward Explicit Tube formula for Kn,r

The goal of this line of research is to more concretely describe
tube formulae for VKn,r(").

Today, we will present how one may obtain leading order terms
of the form:2

VKn,r(t) =
!

!

a!t
2" ! +O(t2" "), t % 0+.

Here the sum runs over each solution ! to:

1 $ 2

#
1 $ r

2

$ !

$ (n $ 1)r! = 0

2This representation may need to be interpreted distibutionally.
9 / 29



Strategy for Analyzing VKn,r (")

The goal is to adapt the method used by Michiel van den Berg
and collaborators to study asymptotics of heat content in
fractals, in work such as [vdB51, vdBG98].

The method is to first divide Kn,r into n congruent pieces.
Then, one subdivides each piece into 2 + (n $ 1) copies of the
same shape, but scaled down in size.

One obtains an approximate functional equation relating the
volume of one piece to the volume of the scaled copies and a
residual volume term, creating an approximate functional
equation.
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Subdividing the Fractal Kn,r
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Scaled Pieces of the Subdivision

When we subdivide Kn,r, we
obtain:

2 pieces which have been
scaled by a factor of
` := 1

2
(1 $ r) from the two

sides

n $ 1 copies of the shape
scaled by r from the
pieces on the n-gon
attached in to middle

Figure: The 4 scaled copies of the
subdivided K5, 1

5
which have been

scaled by r = 1
5
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Adding the Volumes from the Disjoint Pieces

We may express the total volume of the "-neighborhood as a
sum of the volumes contained in disjoint pieces of our partition
of Kn,r.

Let us define VK(") to be the volume of one of the n pieces,
called K, in the initial subdivision. Since the shape has n-fold
symmetry, this is exactly one n

th of the total volume:

VK(") =
1

n
VKn,r(")

We may then write VK as a sum of the 2 + (n $ 1) scaled pieces,
together with the volume in the residual portions, called VErr:

VK(") = 2V`K(") + (n $ 1)VrK(") + VErr(")
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Scaling Properties of VK(")

Suppose we scale a shape X by a factor �. Then we have that "
will scale linearly with � and the volume will scale quadratically
with �. Thus:

V�X(�") = �
2
VX(")

Therefore, we have that:

V�K(") = �
2
VK("/�)

We will use this to rewrite the previous sum of volumes coming
from scaled copies of K in terms of only VK (and a remainder
term.)
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The Approximate Functional Equation for VX(")

Using this scaling property, we may rewrite the equation:

VK(") = 2V`K(") + (n $ 1)VrK(") + VErr(")

as an approximate functional equation for VK .

Namely, we have that VK satisfies:

Approximate Functional Equation for VK

VK(") = 2`2VK("/`) + (n $ 1)r2VK("/r) + VErr(")
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Shapes for the Remainder Volume

The volume VErr can be seen to arise from two types of shapes.

Thus, we may write:

VErr(") = 4VT (") + 2VW (")
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Approximation of the Remainder

It can be shown that VW (") = 2✓"2, where ✓ = ⇡
2

$ ⇡
n .

The other term, VT , is by far the most complicated. An
elementary approximation is given by:

VT (") &
1

2
"
2 cot ✓

This overcounts the volume by a slight amount.
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Rewriting the Remainder Volume

Let us express VErr in terms of a new error volume given by:

R(") =
1

2
cot ✓"2 $ VT (")

It satisfies an estimate based on the largest interval of length `k,
called Lmax, in the triangle:3

0 ' R(") '
1

2
L
2

max cot ✓ = O("2) as " % 0.

Thus we have that:

VErr(") = 4

#
1

2
cot ✓"2 $ R(")

$
+ 2(2✓"2)

3Note that Lmax depends on! .
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Rewriting the Functional Equation

Approximate Functional Equation (Multiplicative Form)

VK(") = 2`2VK("/`) + (n $ 1)r2VK("/r) + C"
2 $ 4R(")

Here, C = (2 cot ✓ + 4✓).

If we change variables by " = e
" x and define f(x) = VK(e" x)

and '(x) = Ce
" 2x + 4R(e" x), we have:

Approximate Functional Equation (Additive Form)

f(x) = 2`2f(x+ log `) + (n $ 1)r2f(x+ log r) + '(x)

This form can be ammenable to using renewal equation
techniques, such as in [LV96].
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Functional Equation for "⇣K

We may now use volume functional equation to write a
functional equation for the corresponding tube zeta function:

"⇣K(s) =
�

0

t
s" 3

VK(t)dt

This zeta function has the property that "⇣�K(s; �) = "⇣K(s; �/�),
and changing � only changes the function by an entire
holomorphic function (not a↵ecting the poles or their residues)
[LvF13]. Thus:

"⇣K(s; �) = 2`s "⇣K(s; �/`)+(n$ 1)rs "⇣(s; �/r)+C
�
s

s
+

�

0

t
s" 3

R(t)dt
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Solving for "⇣K

Letting h(s) denote a (sum of) entire functions arising from
relating the di↵erent values of �. Then we have:

"⇣K(s) =
1

1 $ 2`s $ (n $ 1)rs

#
h(s) + C�

s 1

s
+

�

0

t
s" 3

R(t)dt

$

Since the term in the term in parenthesis is a holomorphic
function in the half-plane Re(s) > 0, we deduce that "⇣K has
simple poles ! for each solution to the complexified Moran
equation:4

1 $ 2`! $ (n $ 1)r! = 0

4Provided that Re( " ) > 0.
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Leading Order Asymptotics of VKn,r

This information and polynomial growth estimates5 for "⇣K are
enough to deduce the leading order asymptotics of VK .

Since the function "⇣K(s) is meromorphic in the half-plane
Re(s) > 0, with simple poles at all the ! such that
1 $ 2`! $ (n $ 1)r! = 0, we would deduce the following formula:

V
[k]
K (t) =

!

!

t
2" !+k

(2 $ ! + 1)k
Res("⇣K ;!) +O(t2" "+k), t % 0+.

Here, " denotes a small positive number, and the pointwise
validity for a given value of k depends on the exact growth
estimates.

5Namely, growth conditions known as languidity of !#K ; see [LRÿZ17]. We
shall assume here that !#K satisÞes such conditions.
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End of Presentation

Thank you for listening!
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Geometry of the Wedge

The contribution from VW comes entirely from a wedge arising
from an angle depending only on n.

✓ =
1

2
✓Int =

⇡

2
$
⇡

n

✓W solves:

2
⇡

2
+✓W +✓Ext = 2⇡

✓W = ⇡$ (⇡$ 2✓) = 2✓

Thus we have:

VW (") = 2✓"2

It’s proportional to
"
2.
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The AFE as a Renewal Equation

A renewal equation is written in an additive form:

f(x) = C1f(x $ a1) + C2f(x $ a2) + '(x)

One can solve such equations using the inverse Laplace
transform to convert shifts to multiplication by exponentials.

Under appropriate conditions, such as those in [LV96], the
solution takes the form:

f(x) =
#!

n=0

!

i1,...,in

ci1 · · · cin'(x $ ai1 $ ... $ ain)
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Analyticity of the Remainder

To determine the poles (and their multiplicites) of "⇣K , we wish
to determine if the remainder integral has any singularities or
not.

Based on the estimate that R(t) ' C0t
2, we find:

%
%
%
%

�

0

t
s" 3

R(t)dt

%
%
%
%'

�

0

t
�" 1

dt =
1

�
�
�
, provided � = Re(s) > 0.

Thus, the integral is nonsingular in the right half-plane.
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