Explicit Formulae in Number Theory Analytic Number Theory Course Presentation, Fall 2021

Will Hoffer

University of California, Riverside

math@willhoffer.com

Counting Primes

Motivating Question

How many primes are there in the first n natural numbers?

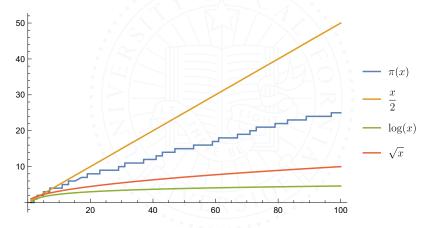
Define the prime counting function $\pi(x)$ by:

$$\pi(x) := \sum_{p \le x} 1 = \# \{ \text{primes } p : p \le x \}$$

Reformulation

What are the asymptotics of $\pi(x)$ as $x \to \infty$?

Below is the graph of the prime counting function, with some (wrong) guesses for its growth rate.



Prime Number Theorem Preliminaries

.

Asymptotic Equivalence

We say $f \sim g$ as $x \to \infty$ exactly when $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.

The logarithmic integral Li(x) is defined by:

$$\operatorname{Li}(x) := \int_2^x \frac{dt}{\log t}$$

The leading order behavior of Li(x) is given by:

$$\operatorname{Li}(x) \sim \frac{x}{\log x}, \quad x \to \infty$$

The Prime Number Theorem

Theorem [Had96, dlVP96]

Let $\pi(x)$ denote the prime counting function. Then the following holds:

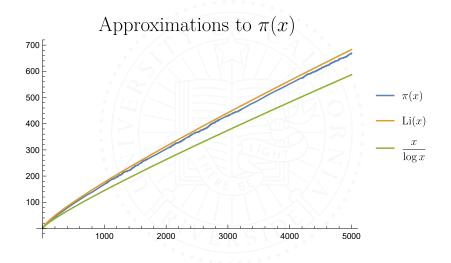
$$\pi(x) \sim \frac{x}{\log x}, \quad x \to \infty$$

A better approximation is given by the following:

$$\pi(x) \sim \operatorname{Li}(x), \quad x \to \infty$$

Both proofs rely on the nonexistence of zeroes of the Riemann zeta function with real part one.

Prime Number Theorem, Visualized



Counting Prime Powers

It turns out, it is easier to study the asymptotics when we count prime powers with certain weights.

Chebyshev ψ Function [Edw74]

The Chebyshev ψ function counts the number of prime powers p^n less than or equal to x with the weight log p:

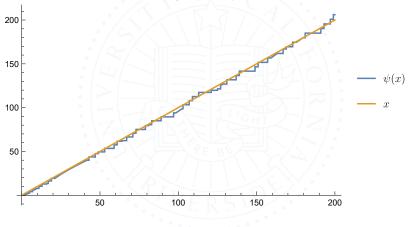
$$\psi(x) := \sum_{p^n \le x} \log p$$

The prime number theorem is equivalent to the following. (See for instance [Edw74, HW08].)

$$\psi(x) \sim x, \quad x \to \infty$$

Chebyshev ψ Function, Visualized

Plot of the Chebyshev ψ Function



Recall that the von Mangoldt function is given by:

$$\Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k \text{ is a prime power} \\ 0, & \text{otherwise} \end{cases}$$

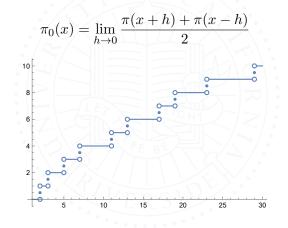
Using this, we may rewrite ψ as the following:

$$\psi(x) = \sum_{n \le x} \Lambda(n)$$

It will be useful to normalize the ψ function. Define:

$$\psi_0(x) := \sum_{n \le x}' \Lambda(n) := \frac{1}{2} \left(\sum_{n < x} \Lambda(n) + \sum_{n \le x} \Lambda(n) \right)$$

A normalized counting function takes the average value of lateral limits at jump discontinuities.



Let $\zeta(s)$ denote the Riemann zeta function.

The Riemann-von Mangoldt Explicit Formula [vM95, Edw74] Let ρ denote a critical zero of the Riemann zeta function. Then we have that:

$$\psi_0(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{1}{2}\log(1 - x^{-2}) - \log(2\pi)$$

The sum over zeroes is conditionally convergent and is ordered by increasing imaginary parts of the zeroes:

$$\sum_{\rho} \frac{x^{\rho}}{\rho} := \lim_{T \to \infty} \sum_{|\mathrm{Im}(\rho)| \le T} \frac{x^{\rho}}{\rho}$$

Consider an arithmetic function a(n) with corresponding Dirichlet series:

$$f(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$

Suppose f is uniformly convergent when $\operatorname{Re}(s) > \sigma_0$ and let $c > \max\{0, \sigma_0\} \& x > 0.$

The normalized counting function of the sequence then satisfies:

Perron's Formula [Tit86, Apo76]

$$N_a(x) = \sum_{n \le x}' a(n) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f(s) \frac{x^s}{s} ds$$

Let f be a function holomorphic in (a neighborhood of) a simply connected domain U except for a finite set $\Omega = \{\omega_1, ..., \omega_n\}$ of singularities.

Suppose that γ is a simple closed curve parameterizing ∂U .

Residue Theorem [Ahl78, Con78, Pal91]

$$\frac{1}{2\pi i} \oint_{\gamma} f = \sum_{\omega \in \Omega} \oint_{\partial B_{\varepsilon}(\omega)} f = \sum_{\omega \in \Omega} \operatorname{Res}(f; \omega)$$

In the above, ε is a positive real number small enough so that f is holomorphic in the annulus $B_{\varepsilon}(\omega) \setminus \{\omega\}$.

Proof Strategy

Let f be the Dirichlet series of Λ :

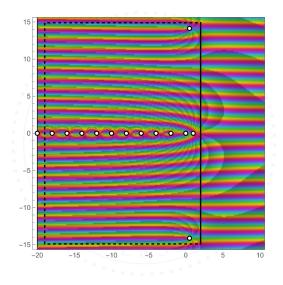
$$f(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$$

Using Perron's formula and the residue theorem, we write:

$$\psi_0(x) = \frac{1}{2\pi i} \int_{c-iT_n}^{c+iT_n} f(s) \frac{x^s}{s} ds + R_0(x, T_n)$$

= $\sum_{\omega \in U_n} \operatorname{Res}(f(s) \frac{x^s}{s}; \omega) + \frac{1}{2\pi i} \sum_{k=1}^3 \int_{\gamma_k} f(s) \frac{x^s}{s} ds + R_0(x, T_n)$
= $\sum_{\omega \in U_n} \operatorname{Res}(f(s) \frac{x^s}{s}; \omega) + R_1(x, T_n, \gamma_k)$

Proof Strategy, Visualized



The function f satisfies the following identity:

$$f(s) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} = -\frac{d}{ds} \log \zeta(s) = -\frac{\zeta'(s)}{\zeta(s)}$$

 ζ has an absolutely convergent Euler product when ${\rm Re}(s)>1,$ allowing us to calculate:

$$-\frac{d}{ds}\log\zeta(s) = \sum_{p}\log p \frac{p^{-s}}{1-p^{-s}}$$
$$= \sum_{p}\sum_{m=1}^{\infty}\log p(p^{m})^{-s}$$
$$= \sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s}}$$

The Logarithmic Derivative of ζ

The function $-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds} \log \zeta(s)$ has a simple pole at the pole s = 1 of ζ and at each zero of ζ .



Rewriting the Sum over Residues I

The singularities ω of $g(s) = -\frac{\zeta'(s)}{\zeta(s)} \frac{x^s}{s}$ come from:

- Critical zeroes ρ of ζ
- Trivial zeroes -2n of ζ
- The pole s = 0 of $\frac{x^s}{s}$
- The pole s = 1 of ζ

Note that $-\frac{\zeta'(0)}{\zeta(0)} = -\log(2\pi) \neq 0$. Also, all of the trivial zeroes -2n are known to be simple.

Given two functions f and h, where f has a simple pole at ω and h is holomorphic there, we can rewrite the residue:

 $\operatorname{Res}(f(s)h(s);\omega) = h(\omega)\operatorname{Res}(f(s);\omega)$

Rewriting the Sum over Residues II

Further, the function $\frac{\zeta'(s)}{\zeta(s)} = \frac{d}{ds} \log \zeta(s)$ has simple poles, with residue equal to the multiplicity of the zero or pole of ζ .¹

Using these facts, we may rewrite the sum over residues:

$$\sum_{\omega} \operatorname{Res} \left(-\frac{\zeta'(s)}{\zeta(s)} \frac{x^s}{s}; \omega \right) = \sum_{\omega} \operatorname{Res} \left(g; \omega \right)$$
$$= \operatorname{Res}(g; 1) + \sum_{\rho} \operatorname{Res}(g; \rho) + \sum_{n=1}^{\infty} \operatorname{Res}(g; -2n) + \operatorname{Res}(g; 0)$$
$$= \frac{x^1}{1} - \sum_{\rho} \frac{x^{\rho}}{\rho} - \sum_{n=1}^{\infty} \frac{x^{-2n}}{-2n} - \frac{\zeta'(0)}{\zeta(0)}$$

¹It is conjectured that all of the zeroes of ζ are simple, in which case the residue is one. If not, we take the convention that the sum over ρ repeats zeroes according to multiplicity.

The third sum can be rewritten as:

$$-\sum_{n=1}^{\infty} \frac{x^{-2n}}{-2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(x^{-2})^n}{n} = -\frac{1}{2} \log(1 - x^{-2})$$

So, assuming that the remainders can be appropriately estimated, we would find:

$$\psi_0(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{1}{2}\log(1 - x^{-2}) - \log(2\pi)$$

The conditionally convergent sum over ρ may be defined as:

$$\sum_{\rho} \frac{x^{\rho}}{\rho} := \lim_{T_n \to \infty} \sum_{|\mathrm{Im}(\rho)| \le T_n} \mathrm{mult}(\rho) \frac{x^{\rho}}{\rho}$$

The proof of the explicit formula (EF) takes the following steps:

- **1** Apply Perron's Formula to ψ_0
- **2** Equate the von Mangoldt Dirichlet series to $-\frac{\zeta'(s)}{\zeta(s)}$
- 3 Use the residue theorem to relate the vertical contour integral to the pole and zeroes of ζ

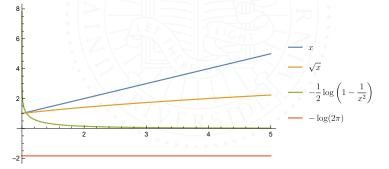
We do not comment on the integral estimates for the sake of time; see chapter three of [Edw74].

Interpretation of the Explicit Formula

Riemann-von Mangoldt Explicit Formula [vM95]

$$\psi_0(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{1}{2}\log(1 - x^{-2}) - \log(2\pi)$$

 $\psi_0(x) = x(1+o(1))$ (PNT) if and only if $\nexists \rho$ with $\operatorname{Re}(\rho) = 1$



Riemann's Original Explicit Formula [Rie59, Edw74]

Define the function:

$$J(x) := \sum_{p^n \le x} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \pi_0(x^{\frac{1}{n}})$$

Riemann's original explicit formula takes the form:²

$$J(x) = \mathrm{li}(x) - \sum_{\rho} \mathrm{li}(x^{\rho}) + \int_{x}^{\infty} \frac{dt}{t(t^{2} - 1)\log t} + \log \frac{1}{2}$$

The formula for π_0 is found by Möbius inversion:

$$\pi_0(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} J(x^{\frac{1}{n}})$$

²Here, li(x) denotes the logarithmic integral starting from lower bound zero and is a Cauchy principle value at the singularity of the integrand.

End of Presentation

References I

- Lars V. Ahlfors, *Complex analysis*, third ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978, An introduction to the theory of analytic functions of one complex variable. MR 510197

Tom M. Apostol, *Introduction to analytic number theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929

- John B. Conway, *Functions of one complex variable*, second ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901

CJ de la Vallée Poussin, La fonction zéta de riemann et les nombres premiers en général, Ann. Soc. Sci. Bruxelles Sér. I **20** (1896), 183–256.

H. M. Edwards, *Riemann's zeta function*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974, Pure and Applied Mathematics, Vol. 58. MR 0466039

J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France **24** (1896), 199–220. MR 1504264

References II

- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press, Oxford, 2008, Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles. MR 2445243

Bruce P. Palka, An introduction to complex function theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1991. MR 1078017

- Bernhard Riemann, On the number of primes less than a given magnitude, Monatsberichte der Berliner Akademie (1859), 1–10.
- E. C. Titchmarsh, *The theory of the Riemann zeta-function*, second ed., The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. MR 882550

H. von Mangoldt, Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse", J. Reine Angew. Math. **114** (1895), 255–305. MR 1580379