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Doctoral Thesis/Dissertation Proposal

My Project, Preliminary Description

I intend to apply tools and techniques from resurgent
asymptotics to fractal geometry. My main focus is on
empowering/better understanding explicit formulae that relate
geometric (or spectral) functions to poles of an associated zeta
function, looking for situations where new phenomena might
manifest.

To understand this better, we shall discuss:

Fractal Geometry

Explicit Formulae

Resurgent Asymptotics
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Fractal Geometry

Navigation Shortcuts
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Fractals
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Fractal Geometry and Geometric Oscillations

Fractals, heuristically speaking, are objects with irregular or
intricate detail at all length scales, usually with some (possibly
approximate form of) self-similarity.

M. L. Lapidus and collaborators have studied geometric
oscillations of fractals using fractal zeta functions. The poles of
these associate zeta functions describe such oscillations, and
have been dubbed complex dimensions.

Properties of the fractal can be expressed in terms of these
complex dimensions. One such property would be the volume of
the set of points within a certain distance from the fractal.

5 / 53



Fractal Geometry and Geometric Oscillations

Fractals, heuristically speaking, are objects with irregular or
intricate detail at all length scales, usually with some (possibly
approximate form of) self-similarity.

M. L. Lapidus and collaborators have studied geometric
oscillations of fractals using fractal zeta functions.

The poles of
these associate zeta functions describe such oscillations, and
have been dubbed complex dimensions.

Properties of the fractal can be expressed in terms of these
complex dimensions. One such property would be the volume of
the set of points within a certain distance from the fractal.

5 / 53



Fractal Geometry and Geometric Oscillations

Fractals, heuristically speaking, are objects with irregular or
intricate detail at all length scales, usually with some (possibly
approximate form of) self-similarity.

M. L. Lapidus and collaborators have studied geometric
oscillations of fractals using fractal zeta functions. The poles of
these associate zeta functions describe such oscillations, and
have been dubbed complex dimensions.

Properties of the fractal can be expressed in terms of these
complex dimensions. One such property would be the volume of
the set of points within a certain distance from the fractal.

5 / 53



Fractal Geometry and Geometric Oscillations

Fractals, heuristically speaking, are objects with irregular or
intricate detail at all length scales, usually with some (possibly
approximate form of) self-similarity.

M. L. Lapidus and collaborators have studied geometric
oscillations of fractals using fractal zeta functions. The poles of
these associate zeta functions describe such oscillations, and
have been dubbed complex dimensions.

Properties of the fractal can be expressed in terms of these
complex dimensions. One such property would be the volume of
the set of points within a certain distance from the fractal.

5 / 53



Example: The Cantor Set

The standard middle-thirds Cantor set:

At the nth stage, 2n−1 intervals of length 3−n are removed. The
Cantor string LCS = {`n}n∈N is then a multiset of these lengths,
repeated according to multiplicity:

{
1
3 ,

1
9 ,

1
9 ,

1
27 ,

1
27 ,

1
27 ,

1
27 , ...

}

The fractal zeta function ζCS is given by:

ζCS(s) =

∞∑
j=1

`sj =

∞∑
n=1

2n−1

3ns
=

1

3s − 2
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Ordinary Fractal String as a Measure

An ordinary fractal string L = {`n}n∈N may be represented as a
measure: 1

µL =

∞∑
j=1

δ{`−1
j }

The zeta function is then given by:

ζL(s) =

� ∞
0

x−sdµL(x)

This construction works for any sufficiently nice measure, not
just those from fractal strings.

1By convention, we center the point masses at reciprocal lengths.
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Generalized Fractal String

Definition

A generalized fractal string is a local positive or complex
measure η defined on (0,∞).2 We also stipulate that η has no
mass near zero, i.e. there exists a positive number x0 for which
|η|[(0, x0)] = 0, where |η| denotes the variation of η.

The associated counting function:

Nη(x) =

� x

0
dη

The associated zeta function:

ζη(s) =

� ∞
0
x−sdη(x)

2In particular, η is a Borel measure whose restriction to compact sets
has bounded variation.
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More on the Counting Function

Ordinary Counting Function

The geometric counting function of an ordinary fractal
string L:

NL(x) :=

� x

0
dµL =

∑
`−1
n ≤x

1

counts the number of reciprocal lengths up to the input.*

*The counting function at jump discontinuities is normalized to
be the average of the lateral limits.

For a general measure η, we may write:

Nη(x) =

� x

0
dη = η

(
(0, x)

)
+

1

2
η({x})
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Zeta Functions and Complex Dimensions

The poles of a zeta function ζη are complex dimensions.

Cantor String, LCS =
{

1
3 ,

1
9 ,

1
9 ,

1
27 ,

1
27 ,

1
27 ,

1
27 , ...

}
ζCS(ω) =

1

3ω − 2
=∞⇐⇒ ω = log3(2) + i

2πk

log(3)
, k ∈ Z

Golden String, LGS =
{

1, 1
2 ,

1
2ϕ ,

1
4 ,

1
2·2ϕ ,

1
2·2ϕ ,

1
2ϕ·2ϕ , ...

}
, where

ϕ = 1+
√

5
2 is the golden ratio.

ζGS(ω) =
1

1− 2−ω − 2−ϕω
=∞⇐⇒ 2−ω + 2−ϕω = 1
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Complex Dimensions Plotted

The Cantor String (Screened) The Golden String

-1.0 -0.5 0.5

-1000

-500

500

1000
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Explicit Fomulae

Navigation Shortcuts
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Riemann Zeroes & the Chebyshev ψ Function

Let ψ(x) count the number of prime powers pm less than or
equal to x with weight log p, and suppose it is normalized at
jump discontinutities. We may write η =

∑
pm log p δ{pm}.

Then ζη(s) =
�∞

0 ψ(x)x−sdx = − ζ′(s)
ζ(s) , and further:

ψ(x) =
∑
p≤x

k log p where pk ≤ x < pk+1

=
∑
ω

xω

ω
Res(ζη(s);ω)− ζ ′(0)

ζ(0)

=
x1

1
−
∑
ρ

xρ

ρ
−
∞∑
k=1

x−2k

−2k
− log 2π

= x−
∑
ρ

xρ

ρ
− 1

2
log(1− x2)− log(2π)
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Explicit Formula via Complex Dimensions

Pointwise E.F., with Error (Thm 5.10 in [LvF13])
Let η be a languid generalized fractal string, k a sufficiently large positive
integer, 3 and Dη(W ) the visible complex fractal dimensions of η in the
window W to the right of screen S. Then for all x > 0,

N
[k]
η (x) =

∑
ω∈Dη(W )

Res

(
xs+k−1ζη(s)

(s)k
;ω

)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1
j

)
(−1)jxk−1−jζη(−j)

+O
(
xsup Re(S)+k−1

)

The sum is understood to be ordered by increasing magnitude of the
imaginary part of the poles ω. k = 1 corresponds to the usual counting
function.

3Here k > max{1, κ+ 1}, where κ is from the languid growth conditions.
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Explicit Formula Notes

Strongly languid strings, satisfying a stricter growth
condition, satisfy the formula with no error term on an
interval (A,∞) with A > 0.

These formulae can be established for any k when
considered in the distributional sense.

Explicit formulae can also been established for other
functions such as geometric tube functions.

The remainder term is an integral over the screen, with the
integrand the same as the function inside the residue.

Higher dimensional formulae exist.
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Resurgent Asymptotics

Navigation Shortcuts
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Asymptotic Expansions

We say f(z) ∼
∑∞

n=1 anz
−n as z →∞ provided that each

partial sum truncation is an approximation to f with error on
the order of the next term in the series.

The following are equivalent definitions:

f(z) ∼
∞∑
n=1

an
zn
, z →∞

f(z) =
N∑
n=1

an
zn

+O

(
1

zN+1

)
, z →∞, ∀N ∈ N

f(z) =
N∑
n=1

an
zn

+ o

(
1

zN

)
, z →∞, ∀N ∈ N
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Asymptotic Expansion Examples

Stirling’s series:

log(Γ(x)) ∼
(
x− 1

2

)
log(x)− x+

1

2
log(2π)

+

∞∑
j=1

B2j

2j(2j − 1)
x−2j+1, x→∞

Sine and an exponentially small term:

sin(z) ∼
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
∼ sin(z) + e−1/z, z → 0+

Euler and the exponential integral:

−exEi(−x) ∼
∞∑
k=0

(−1)k
k!

xk+1
, x→ +∞
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Stokes Phenomenon

The Stokes phenomenon, broadly speaking, is that asymptotic
expansions may change behavior in the complex plane.

One key feature is that as the complex phase changes, small or
“invisible” terms not in the asymptotic expansion may become
dominant/important.

Transseries are a broader class of series that can contain all of
the important terms. We make sense of them via stronger Borel
resummation techniques.
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Supernumerary Bows & The Airy Function
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Airy Function & Stokes Phenomenon

The Airy function, a solution to y′′ − xy = 0, has two different
asymptotic expansions. To first order, we have:

(−z)−
1
4√

π
sin

(
2
3

(−z)
3
2 +π

4

)

Ai(z)

z−
1
4

2
√
π
e−

2
3
z

3
2

| arg(−z)| < 2π
3

(Entire)

| arg(z)| < π
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Airy Function Expansion

The Airy function is governed by the asymptotic expansion:

ϕAi(z) =

∞∑
n=0

an
zn

=

∞∑
n=0

(
−3

4

)n Γ(n+ 1
6)Γ(n+ 5

6)

2πΓ(n+ 1)

1

zn

Ai(k) ∼ 1

2
√
π
k−

1
4 e−

2
3
k

3
2 ϕAi(k

3
2 )

More remarks:

ϕAi is factorially divergent.

z = k
3
2 is a natural change of variables for ensuing

resummation.
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Borel Summation

The goal is to resum formal asymptotic expansions, or more
strongly transseries expansions.

For factorially divergent expansions, we may Borel transform,
resum, and Laplace transform back.

As it turns out, this process can recover important information.

Key Steps:

Borel Transform

Analytic Continuation in the Borel Plane

Dealing with Singularities

Laplace Transform Back
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Borel Summation: Schematic
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Borel Summation: Example

25 / 53



Borel Summation: Further Discussion

Borel summation is the starting point for a larger field we dub
resurgent asymptotics.

A fuller resummation process can handle rotating the contour
for the Laplace transform back, as well as singularities that may
be encountered along such contours.

For example, if we chose ϕ̃(z) =
∑∞

n=0 n!z−(n+1), its Borel
transform would have a singularity at +1, preventing an
ordinary Laplace transform.

Example with the Airy function resummation.
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Transseries Short Introduction

Transseries are elements of a (formal) differential field obtained
by extending/closing ordinary series under additional algebraic
and differential operations.

They have an ordering akin to asymptotic growth rate.

Summable transseries are those that correspond, under
enhanced Borel resummation, to bona fide functions.

Examples:

−4 exp

 ∞∑
j=0

x−jex

+

∞∑
j=0

x−jex − 17 + πx−1

exp
(

(log log x)
1
2

)
+ (log log x)

1
2 + x−2
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Transseries Schematic
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Resurgent Functions

Our (Particular Type of) Resurgent Functions

Resurgent functions include formal asymptotic power series (in
reciprocal powers of x) whose Borel transforms correspond to
germs of analytic functions that can be analytically continued
in the Borel plane.

Roughly speaking, resurgent functions are those with the
necessary conditions for which enhanced Borel resummation will
succeed. One can consider them to be: the formal objects prior
to resummation, the corresponding analytic germs obtained
after the Borel transform, or the resummed/bona fide functions.
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Resurgence & Alien Derivatives

An operator called the alien derivative connects the behavior of
a resurgent function near the origin to behavior near other
singular points.

J. Écalle on the namesake “Resurgence”

[Alien derivatives] enable us to describe, by means of so-called resurgence
equations... the very close connection which usually exists between the
behavior of [the Borel transformed analytic germ] near 0• and near its other
singular points ω.

This self-reproduction property is an outstanding feature of all resurgent
functions of natural origin (their birth-mark, as it were!) and it is precisely
what the label “resurgence” (bestowed somewhat promiscuously on the
whole algebra [of such functions]) is meant to convey.
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Doctoral Thesis/Dissertation Project, Restated

My Project Description, More Precisely

I intend to study explicit formulae (that admit analytic
continuation in the complex plane,) and to determine where and
why their asymptotics may change (cf. Stokes phenomena.)

In such scenarios, I aim to find more complete descriptions, or
any “missing” terms that could become relevant.

To achieve these goals, I intend to use enhanced Borel
summation, transseries, and other tools in resurgent analysis to
study relevant expansions as inputs/parameters change.
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Known Applications of Explicit Formulae
and of Resurgence

Navigation Shortcuts
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Motiviation & Relevance

Motivating idea from mathematical physics:

Recovering non-perturbative effects from perturbative
asymptotic expansions

Known uses of resurgence and of explicit formulae:

Explicit Formulae & Proving the Prime Number Theorem

Inverse Spectral Problem & The Riemann Hypothesis

Fractal Tube Formulae & Higher Dimensions

Applications of Resurgence

Resurgent Analysis & Fractal Geometry
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End of Presentation

Thank you for listening!
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Appendix: Navigation Shortcuts

1 Introduction
My Project, First Statement

2 Fractal and Spectral Geometry
Ordinary Fractal Strings
Generalized Fractal Strings
Counting Functions
Zeta Functions

3 Explicit Formulae
Formulae from Fractal Geometry

4 Resurgent Asymptotics
Stokes Phenomenon
Borel Summation

Transseries
Resurgence

5 Project Description
My Project, More Precisely

6 Conclusion
Applications & Motivation

7 Appendix
Applications of Explicit Formulae
Resurgence and Applications
Resurgence and Fractal Geometry
More on Fractal Geometry
Airy Function Resummation
Bibliography
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Explicit Formulae & Proof of the Prime Number
Theorem

A Formula for the Riemann Zeta Function

Let ζ be the Riemann zeta function; it is strongly languid with
k = 0 and A = 1. Denote by P =

∑
m≥1,p(log p)δ{pm} the

geometric zeta function of the prime string. Then for all x > 1,
(in a distributional sense,)

P = 1−
∑
ρ

xρ−1 +

∞∑
n=1

x−(2n+1)

This formula can be used to derive the following formula for the
prime counting function π, and thus the prime number theorem.

π(x) = Li(x) +O(xe−c
√

log x)

Return to applications overview.
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Inverse Spectral Problem & The Riemann Hypothesis

Inverse Spectral Problem with Fractal Strings (ISP)D

Let L be a fractal string corresponding to the set Ω and having
Minkowski dimension D ∈ (0, 1). We say that (ISP)D holds if,
for any such fractal string L , whenever NL (λ) asymptotically
has a monotonic second term, then the boundary ∂Ω is
Minkowski measurable.

Theorem (Lapidus and Maier, 1995)

(ISP)D holds for a given value of D ∈ (0, 1) iff the Riemann
zeta function does not have any zeroes on the vertical line
Re(s) = D. As a corollary, the Riemann hypothesis holds iff
(ISP)D holds exactly for all D ∈ (0, 1) \

{
1
2

}
.

Return to applications overview.
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Major Uses of Resurgent Analysis

Dulac’s Conjecture

On finiteness of limit cycles; related to Hilbert’s 16th

problem

Écalle’s proof pioneers resurgent analysis

Quantum Field Theory

Exponentially small, non-analytic corrections to
perturbative expansions (“instantons”)

Potential to recovering nonperturbative effects through
resurgence of a perturbative expansion
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More Resurgence Applications in Mathematical Physics

Normal forms of dynamical systems

Gauge theory of singular connections

Quantization of symplectic and Poisson manifolds

Floer homology and Fukaya categories

Knot invariants

Wall-crossing and stability conditions in algebraic geometry

Spectral networks

WKB approximation in quantum mechanics

Non-linear differential equations and asymptotics

Return to applications overview.
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Resurgent Analysis & Fractal Geometry

Known applications to fractal geometry:

Transseries formulae have been useful in describing some
Julia sets.

Resummation can extend some lacunary Dirichlet series
possessing natural boundaries.

Based on work of Costin and Huang.

Return to applications overview.
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Appendix: Ordinary Fractal String/Zeta Function

Let Ω be a bounded open set in R; then Ω may be written as a
countable union of disjoint open intervals.

Let L = {`n}n∈N denote the set of lengths of these intervals,
repeated with multiplicity. L is called a fractal string.

The zeta function associated to L is given by:

ζL(s) =

∞∑
n=1

`sn

Return to fractal strings and zeta functions from measures.
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Appendix: Languid Growth Conditions

Let S denote the screen for ζη, viz. S = {s(t) + it : t ∈ R}.

Let {Tn}n∈Z be a two sided sequence with:
Tn>0 ↗∞, Tn<0 ↘ −∞, and Tn ∼ |T−n| as n→∞.

Let κ be a positive integer and C be a positive constant.

Polynomial growth on a sequence of horizontal lines (L1)

∀n ∈ Z,∀σ ≥ s(Tn), |ζη(σ + iTn)| ≤ C(|Tn|+ 1)κ

Polynomial growth along the given screen (L2)

∀t ∈ R, |t| ≥ 1, |ζη(s(t) + it)| ≤ |t|κ

Return to pointwise explicit formula with error term.
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Appendix: Higher Dimensional Tube Formulae

Relative Tube Function, and antiderivatives:

V
[0]
A,Ω(t) := |At ∩ Ω|, V

[k]
A,Ω(t) :=

� t

0
V

[k−1]
A,Ω (τ)dτ

Relative Tube Zeta Function, for (A,Ω) in RN :

ζ̃A,Ω(s) :=

� δ

0
ts−N−1|At ∩ Ω|dt

Pointwise Tube Formula with Error, for languid relative fractal
drums:

V
[k]
A,Ω(t) =

∑
ω∈P(ζ̃A,Ω,W )

Res

(
tN−s+k

(N − s+ 1)k
ζ̃A,Ω(s);ω

)
+ R̃

[k]
A,Ω(t)

Return to one dimensional formula.
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Appendix: Minkowski Dimension and Measurability

Let A ⊆ Rn.
Upper Minkowski Content:

M ∗
d (A) := lim sup

ε→0+

|Aε|
εn−d

The lower Minkowski content M∗,d is with a limit infimum.

Minkowski Dimension D:

∃!D, if d < D, M ∗
d (A) =∞ and if D < d, M ∗

d (A) = 0

Minkowski Measurability:

M ∗
D = M∗,D =: M , and 0 < M <∞

Return to ISP and RH.
44 / 53



Airy Series: Borel Summation

The minor of ϕAi is its (formal) Borel transform, forgetting
the constant term:

ϕ̃Ai := B[ϕAi] =

∞∑
n=1

an
ζn−1

(n− 1)!

ϕ̃Ai extends analytically to the universal cover of
C \

{
0,−4

3

}
For any direction θ not along the negative real axis, the
following converges for Re(zeiθ) > 0:

SθϕAi(z) := a0 + LθB[ϕAi](z) = a0 +

∞eiθ�

0

ϕ̃Ai(ζ)e−zζdζ
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Airy Function, Resummation on R+

Where before:

Ai(k)∼ 1

2
√
π
k−

1
4 e−

2
3
k

3
2 ϕAi(k

3
2 )

We now have:

Ai(k)=
1

2
√
π
k−

1
4 e−

2
3
k

3
2 S0ϕAi(k

3
2 )

This resummation is valid for | arg(k)| < π
3 , |k| > 0.

One can rotate the direction of summation for new regions of
validity. See: Airy function on the negative real line.
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Airy Function Resummation near θ = −π

Contours above and below the singularity:

Relationship of the resummations:

S−π−ϕAi(z) = S−π+ϕAi(z) +

�
γ
ϕ̃Ai(ζ)e−zζdζ
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Alien Calculus & Behavior across the Singularity

The Hankel contour γ can be expressed using the so-called alien
derivative: �

γ
ϕ̃Ai(ζ)e−zζdζ = e+ 4

3
zS−π

(
∆z
− 4

3

ϕAi

)
(z)

In this case,

∆z
− 4

3

ϕAi = −iϕBi, ϕBi(z) :=
∞∑
n=0

(−1)n
an
zn

ϕBi is also Gevrey-1 and its minor ϕ̃Bi extends analytically to
the universal cover of C \

{
0,+4

3

}
.

Return to resummation on R+. More on the Airy function
resummed on R−.
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Appendix: Airy Function on R−

Deducing the behavior Ai for negative real inputs.

Airy expansion when | arg(k)− π| < π
3 , z = k

3
2 :

Ai(k) =
1

2
√
π
k−

1
4

(
e−

2
3
zS− 3π

2
ϕAi(z) + ie+ 2

3
zS− 3π

2
ϕBi(z)

)
Note the new exponential term that appeared.

One can rewrite the LHS as the resummed version of the second
expansion we saw previously.

Return to Airy Resummation.
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